H6676 Computer Programming for Information Professionals

Assignment 2

An Information Retrieval System

Introduction

This is a group assignment with between 1-3 members per group. Other group sizes will not be allowed. Your assignment is to create a rudimentary information retrieval system (IRS) that performs the following tasks:

1. Inverted index creation

2. Query processing

Since the IRS consists of two separate tasks, you will write separate programs for each of them. That is, one Java application will create the inverted index while another will perform query processing. All programs must perform appropriate exception handling.

Inverted Index Creation

For the purposes of this assignment, an inverted index is a text file containing a list of keywords. Each keyword is associated with a list of documents containing it together with the term frequencies. Each line in the inverted index file contains a keyword, and the format of the inverted index is:

<keyword> <docid>:<frequency> <docid>:<frequency> … <docid>:<frequency>

where

· keyword: the keyword

· docid: the unique ID of the document containing the keyword

· frequency: the frequency of the keyword in that document

· keyword and document ID and frequency pairs are separated by one space

Example:

dog 4:3 6:7 10:2

cat 1:1 2:6 7:4 8:2 9:8

In addition to the inverted index file, a support file called the documents file is used to map the docid to the actual location (path) of the document. The format of this file is:

<docid> <filename>

where

· docid: the unique ID of the document

· filename: the full path name of the document (i.e. file with directory names)

Example:

1 c:\animals.txt

2 d:\docs\file.doc

Graphically, the two files might look like the following:

Inverted Index

	apple
	1:3
	3:7
	
	

	bear
	3.1
	4:2
	5:3
	6:4

	dog
	1:4
	
	
	

Documents File

	1
	c:\fruits.txt

	2
	c:docs\stuff.txt

	3
	e:\animals.txt

	4
	e:\temp.txt

	5
	d:\pub\docs\things.txt

	6
	c:\lessons\test.txt

Your Task

Write a Java application that will construct an inverted index and a documents file given a directory containing plain text files. Your application will accept 3 command-line arguments:

1. full path to the directory which contains the text files to be processed

2. inverted index file (may be a file name or a full path)

3. documents file (may be a file name or a full path)

For example, if your program is named IndexMaker, then it might be executed as:

c:\h6676\asg2> java IndexMaker c:\h6676\asg2\files inverted.txt docs.txt

The application should not continue if:

· the number of parameters are not exactly three (3)

· the specified directory for the text files does not exist

In this example, the program will look into the c:\h6676\asg2\files directory and process all the files located there. Therefore, whatever files you do not want processed should not be in there. The program will then create the file inverted.txt and store the index information in that file. The docs.txt file will contain the document ID to path name mapping.

During index creation, each token in the text file is first converted to lower case and submitted to a stopword filter. If the token is a stopword, it is discarded, otherwise it is stemmed and inserted into the inverted index file. The keywords in the inverted index file must be in sorted order.

You may assume that the files to be processed will be text files that contain only tokens (no punctuation marks or other special characters).

Program Logic

get the list of files in the specified directory

while(there are more files to be processed)

{

create a unique document ID for the file

associate the ID with the full path of the file

store this pair in some data structure

read the file one line at a time

tokenize the line

for(each token)

{

convert to lowercase

check against stopword list

stem it

store it and the document ID in some data structure

update term frequency for the document in the data structure

}

}

sort the terms in the data structure

save the contents of the data structure to the inverted index file

save the document ID-full path pair into the documents file

Query Processing

The IRS provides a text-based command-line interface that accepts queries from users. After processing the query, it returns a list of matching documents. Queries simply consist of search terms separated by one or more spaces. Terms are ANDed, meaning that only documents containing all of the terms will be returned. For example, the query:

information retrieval system

will return a list of documents containing the words “information”, “retrieval”, and “system” in any order.

Search results will be a list of document file names. These names are obtained from the documents file associated with the inverted index. For example, the results listings of the above query might be:

c:\documents\info-retrieval.txt

c:\documents\ir-paper.txt

d:\documents\irs-conference-paper.txt

The query processing system should also support a command

.quit

that exits the application and any other helpful commands. These commands should be preceded by a period “.”

Your Task

The query processing application will accept two command-line arguments: the full path of the inverted index file and the documents file. For simplicity, this application reads the contents of these files and stores them into appropriate data structures. All query processing operations will then use these data structures to extract relevant data.

The following illustrates how the entire IRS might work. Assume that the Java application for index creation is IndexMaker while the application for query processing is QueryProcessor. Assume also that the command-line prompt for QueryProcessor is “>>>”:
	C:\h6676>java IndexMaker c:\docs c:\h6676\inverted.txt c:\h6676\docs.txt

Processed 125 files in c:\docs.

C:\h6676>java QueryProcessor c:\h6676\inverted.txt c:\h6676\docs.txt

Welcome to my information retrieval program.

Please enter query terms or .quit to exit program.

>>> information retrieval system

3 matching document(s):

c:\docs\info-retrieval.txt

c:\docs\ir-paper.txt

c:\docs\irs-conference-paper.txt

>>> hello there

No matching documents.

>>> .quit

Good bye.

C:\h6676>

Program Logic

read and store the inverted index and documents files into data structures

display command prompt and read a line from System.in

while(line is not null and not .quit)

{

parse query terms

for(each term)

{

convert into lower case

discard if in stop list

stem term

get and store document IDs for that term in a data structure

}

go through list of document IDs and extract only those IDs that occur in all terms

go through final list of document IDs and get the associated file names

display number of hits and file names

display prompt and read a line from System.in

}

Supporting Features

Lexical Analysis

Lexical analysis is the process of converting a stream of characters into a stream of tokens or words. Tokens are groups of characters with collective meaning, for example, a word in the English language. Lexical analysis is the first stage in indexing and query processing. Documents need to be tokenized to generate lists of index terms while queries need to be parsed into tokens and compared with indexes.

For the purposes of this assignment, consider tokens to be a sequence of letters or numbers separated by a space or punctuation. In other words, a token consists only of letters and/or numbers. You will need to convert each token into lower case.

Stopword Filtering

You will need to create a stopword filter yourself or search for one on the Web (probably easier) as part of this assignment. The filter is subject to the following requirements:

· The stopword filter must be a self-contained class or package. If it is a package, it should only provide stopword filtering functionality

· The class should be easily incorporated and used as part of a larger program. That is, the class should be reusable

· The class should provide well-defined methods for stop word filtering

· The class should be in the public domain – free for public use

· Source code for the stopword filter must be available free of charge

Stemming

All programs for this assignment must use the provided stemmer. The algorithm used is the Porter stemming algorithm and is found in PorterStemmer.java, located in the assignment02 directory of the project Web site (ISLAB2). The source file must be compiled together with your other class files for your applications to work successfully.

While the algorithm looks complex, using the class is easy. After instantiation, simply invoke one of the stem methods depending on your needs. Please read the documentation found in the source file for more information. Example:

PorterStemmer stemmer;

...

// Create a new PorterStemmer object

stemmer = new PorterStemmer();

...

// Stem a String: token is a String object

// The stem method will return a String

String s = stemmer.stem(token);

...

Note that once your instantiate a PorterStemmer object, it can be reused in the program. That is, you do not have to instantiate a new PorterStemmer object every time you want to stem a token.

Error/Exception Handling

If there are any exceptions or errors encountered during the execution of the applications, they should terminate gracefully. That is, the affected application should stop executing and an appropriate error message displayed. Consequently, you will have to catch any exceptions thrown and consider all possible ways in which the applications might fail.

Other Instructions

Application Structure

The Java applications you write must consist of more than one class, with features in separate classes. For example, the main application should be in one class and the index builder in a separate class. In addition, if a particular feature involves several steps, try to separate the steps into different methods (method decomposition).

Each source file must contain the following header information as comments:

· names and e-mail addresses of group members

· brief description of the class and its purpose

Grading

Your applications will be graded according to the following criteria:

· Documentation and comments

· Coding style

· Error handling

· Program structure (classes and methods)

· Program correctness

Submission

Upload all the source code and class files to your personal Web page. Create new entries in your personal Web page for this assignment and link the source and class files to this page. Provide the following information:

· short descriptions of how your applications work – including the various classes and their interactions

· instructions for compilation and execution

· sample text files which you used to test your programs

· the resulting output of the programs (inverted index, documents files, sample queries and their results)

· names and e-mail addresses of all group members

Finally, submit a hard copy of all source code used in your applications by the due date. However, do not include the source code of the Porter stemmer.

